![Seismic stratigraphy interpretation via deep convolutional neural networks: A semi-supervised approa](https://static.wixstatic.com/media/fbb493_4553731e70ea486bba03d32ee9ead138~mv2.png/v1/fill/w_430,h_242,fp_0.50_0.50,q_95,enc_auto/fbb493_4553731e70ea486bba03d32ee9ead138~mv2.webp)
Seismic stratigraphy interpretation via deep convolutional neural networks: A semi-supervised approa
To improving the performance of deep learning algorithms on seismic interpretation from a small amount of training data, this study...
![GeoPy: A simple tool for Seismic in Python](https://static.wixstatic.com/media/fbb493_462f614f33eb4e358cbe05d494a52bfb~mv2.png/v1/fill/w_430,h_242,fp_0.50_0.50,q_95,enc_auto/fbb493_462f614f33eb4e358cbe05d494a52bfb~mv2.webp)
GeoPy: A simple tool for Seismic in Python
Machine learning has been well recognized for subsurface data analysis in E&P. While the state-of-the-art ML algorithms have been...
![Building a global seismic texture interpretation network](https://static.wixstatic.com/media/fbb493_3e5d371c64e54797a380be136b1573ed~mv2.png/v1/fill/w_430,h_242,fp_0.50_0.50,q_95,enc_auto/fbb493_3e5d371c64e54797a380be136b1573ed~mv2.webp)
Building a global seismic texture interpretation network
The primary goal of seismic interpretation is to understand seismic signals, categorize them into various patterns, connect each pattern...
![Real-time seismic image interpretation via deconvolutional neural network](https://static.wixstatic.com/media/fbb493_79bdcaa2c4c7424bac4d2758ed7baa04~mv2.png/v1/fill/w_430,h_242,fp_0.50_0.50,q_95,enc_auto/fbb493_79bdcaa2c4c7424bac4d2758ed7baa04~mv2.webp)
Real-time seismic image interpretation via deconvolutional neural network
To address the limitation of low efficiency for classifying seismic features from large datasets, this study aims at implementing the...
![Why using CNN for seismic interpretation? An investigation](https://static.wixstatic.com/media/fbb493_bfea7523934540729eee5ae553d2bd20~mv2.png/v1/fill/w_430,h_276,fp_0.50_0.50,q_95,enc_auto/fbb493_bfea7523934540729eee5ae553d2bd20~mv2.webp)
Why using CNN for seismic interpretation? An investigation
This study first applies two most popular neural network frameworks, the multi-layer perceptron (MLP) network and the convolutional...
![Seismic fault detection from post-stack amplitude by convolutional neural networks](https://static.wixstatic.com/media/fbb493_c82e89f72dfa4c6da3ad14a5563b105c~mv2.png/v1/fill/w_430,h_242,fp_0.50_0.50,q_95,enc_auto/fbb493_c82e89f72dfa4c6da3ad14a5563b105c~mv2.webp)
Seismic fault detection from post-stack amplitude by convolutional neural networks
This study aims at implementing popular CNN tool for the purpose of seismic fault detection, which is superior in two ways compared to...
![Machine/deep learning-based seismic interpretation: An example of salt-body delineation](https://static.wixstatic.com/media/fbb493_75b55a1866c34638adf154b18a279c97~mv2.png/v1/fill/w_430,h_242,fp_0.50_0.50,q_95,enc_auto/fbb493_75b55a1866c34638adf154b18a279c97~mv2.webp)
Machine/deep learning-based seismic interpretation: An example of salt-body delineation
With the growing complexity of seismic data in both size and resolution, more efficient, accurate, and effective seismic interpretation...